Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation.

نویسندگان

  • N E Assidjo
  • T Chianéa
  • I Clarot
  • M F Dreyfuss
  • P J Cardot
چکیده

Field-flow fractionation (FFF) is an analytical technique particularly suitable for the separation, isolation, and characterization of macromolecules and micrometer- or submicrometer-sized particles. This chromatographic-like methodology can modulate the retention of micron-sized species according to an elution mode described to date as "steric hyperlayer". In such a model, differences in sample species size, density, or other physical parameters make particle selective elution possible depending on the configuration and the operating conditions of the FFF system. Elution characteristics of micron-sized particles of biological origin, such as cells, can be modified using media and carrier phases of different osmolarities. In these media, a cells average size, density, and shape are modified. Therefore, systematic studies of a single reference cell population, red blood cells (RBCs), are performed with 2 sedimentation FFF systems using either gravity (GrFFF) or a centrifugational field (SdFFF). However, in all cases, normal erythrocyte in isotonic suspension elutes as a single peak when fractionated in these systems. With carrier phases of different osmolarities, FFF elution characteristics of RBCs are modified. Retention modifications are qualitatively consistent with the "steric-hyperlayer" model. Such systematic studies confirm the key role of size, density, and shape in the elution mode of RBCs in sedimentation FFF for living, micronsized biological species. Using polymers as an analogy, the RBC population is described as highly "polydisperse". However, this definition must be reconsidered depending on the parameters under concern, leading to a matricial concept: multipolydispersity. It is observed that multipolydispersity modifications of a given RBC population are qualitatively correlated to the eluted sample band width.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mathematical Analysis of MHD Flow of Blood in Very Narrow Capillaries (RESEARCH NOTE)

A mathematical model for blood flow in narrow capillaries under the effect of transverse magnetic field has been investigated. It is assumed that there is a lubricating layer between red blood cells and tube wall. The transient flow of the fit red blood cell surrounded by plasma annulus in the narrow capillary is considered. The analysis of fluid flow between red cell and tube wall, when the ce...

متن کامل

Miniature field-flow fractionation system for analysis of blood cells.

Field-flow fractionation is an analytical tool that has been historically used to separate species, ranging from molecules to particles or cells several micrometers in size. This technology can effect separation by size, density, charge, or other physical properties, depending on the configuration of the field-flow system. We have developed a miniature field-flow system to analyze cell populati...

متن کامل

EFFECTS OF MAGNETIC FIELD ON THE RED CELL ON NUTRITIONAL TRANSPORT IN CAPILLARY-TISSUE EXCHANGE SYSTEM

A mathematical model for nutritional transport in capillary tissues exchange system in thepresence of magnetic field has been studied. In this case, the cell is deformed. Due to concentrationgradients, the dissolved nutrient in substrate diffuses into surrounding tissue. Theanalytical method is based on perturbation technique while the numerical simulation is basedon finite difference scheme. R...

متن کامل

Sedimentation, viscosity, and electrophoretic studies on purified Lee influenza virus preparations.

Crude preparations of PR8 influenza virus, obtained by high speed centrifugation of the chorioallantoic fluid of infected chick embryos, contain an impurity which is similar to substances elaborated normally by uninfected embryos. Electron microscope and ultracentrifuge measurements have shown that the impurity is smaller in size than the virus (l-7), while viscosity determinations revealed tha...

متن کامل

Cell separation by dielectrophoretic field-flow-fractionation.

Dielectrophoretic field-flow-fractionation (DEP-FFF) was applied to several clinically relevant cell separation problems, including the purging of human breast cancer cells from normal T-lymphocytes and from CD34+ hematopoietic stem cells, the separation of the major leukocyte subpopulations, and the enrichment of leukocytes from blood. Cell separations were achieved in a thin chamber equipped ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatographic science

دوره 37 7  شماره 

صفحات  -

تاریخ انتشار 1999